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Introduction

» Integer linear programming (ILP), or simplyinteger
programming, is linear problems with the additional
constraint that the solution components be integers

» Notation
The set of integer%
The set of vectors with integer componentg”
The set ofm by n matrices with integer entrieg™="

» Express an ILP problem in the following form:

minimize el x

subject to Ax = b
x>0
x el



Unimodular Matrices

4

Definition 19.1. Anmby ninteger matrixa ¢ Zm" p<n
IS unimodular If all its nonzeramth-order minors arel

Consider the linear equatiof: = » wherez™" m <n
Let B be a corresponding basis matrix rfany m matrix
consisting oimlinearly independent columns af ). Then,
the unimodularity ofa Is equivalentftet B| =1 for any
such B .

A pth-order minor of an m x»  matrpd, with p < min{m,n} , IS
the determinant of axp  mMaitrix obtained frAry deleting
m-p rows andn-p columns



Unimodular Matrices

» Lemma 19.1. Consider the linear equatian= b where
Acz™" m<n ,ISunimodularangc z" . Themhalsic
solutions have integer components.

» Proof. Suppose that the firstcolumns ofA constitute a
basis, and thas  Is the invertilnhdby m matrix
composed of these columns. Then the correspondisig b
solution Is . [B7'b

%
Because all the elements af  are integeiis,an integer
matrix. Moreover, becausa is unimodulgkt B| =1 .
This implies that the inversB=!  Is also argetr matrix.
Therefore,z* Is an integer vector.




Unimodular Matrices

» Corollary 19.1. Consider the LP constramt =6,z >0 |,
whereA Is unimodulara € zm" m <n, andb € Z
Then, all basic feasible solutions have integermoments.

» Unimodularity allows us to solve ILP problems usihg t

simplex method. Consider the ILP problem

minimize el x

subjectto Az =b x>0 x€€Z"
where Acz™" m<n bgz" . Tdorollary tells us that

If we consider the associated LP problem

minimize ¢! x
subject to Az =b x>0

the optimal basic feasible solution is an integgsator.

5



Example

» Consider the following ILP problem

maximize 2x1 + dxs

subject to x1 +x3 =4

We can write thi

A:

It is easy to check that

1
0
1

rob

— = O )
OQ}—\U
o = O

-
0
1_

To+ x4 =0
1+ To+ x5 =38
T, X9, X3, L4, T5 = 0

X1, T2,x3,T4,Ts < 7

em In matrix form with

b=

§
8

IS unimodular.



Example

» Hence, the ILP problem above can be solved by splvin
the LP problem

maximize 2x1 + 5o
subject to r1 + 3 =4
To+ x4 =0

T1+ To+ Ty = 8
Iy, X2,x3,T4, L5 Z 0

» This was done in Example 16.2 using the simplexhoukt
yielding optimal solution [2, 6, 2, 0, O]



Unimodular Matrices

4

In general, when the matrix  is not unimodulag,
simplex method applied to the associated LP problem
yields a noninteger optimal solution. But thereams
exception.

Suppose that c z™* m<n , &arRdZ™ , as long as each
m by m basis matrixs consisting of columns &f
corresponding to a basic feasible solution haptbperty
that |det Bj=1 , we can use the argumenrtenproof of
Lemma 19.1 to conclude that the basic feasibletisolus
an integer vector.

Equivalently, we can draw this conclusion if eaelsib
submatrixB ofA such thadet B| # 1 correspoio a
nonfeasible basic solution.



Example
» Consider the ILP problem

minimize — x; — 229
subject to — 221 + 19 + 13 = 2
—T1+ 2o+ x4 =3
1+ x5 =23
X1,T9,T3,x4,Ts > 0
X1, T, T3, Ty, X5 € L

Can this ILP problem be solved using the simplexhoe?

» The matrix o1
A=1|-110
0 0

o = O

0
0
1_

1

IS hot unimodular.



Example

» Indeed, this matrix has one (and only one) basimsirix
with determinant other thant |, consisting @& finst,
fourth, and fifth columns oft

» Indeed, if we writeB =[a;,a,a5 ,theaB=—2 .
However, a closer examination of this matrix anwletor
b=12,3,3]" reveals that the corresponding basic solution is
not feasible:B'v = [-1,2,4"  (which, modentally,
happens to be an integer vector). Therefore, for th
problem, applying the simplex method will produce a
Integer optimal basic feasible solution.
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Example
» We begin by forming the first tableau,

a, a, as3 a, a; b
-2 1 1 0 0 2
—1 1 0 1 0 3
1 0 0 0 1 3
c' =1 -2 0 0 0 0

We haver, = -2 . Therefore, we introducento the new
basis. We calculate the ratios/vi», v > 0, to determine

the pivot element:
yo _2 Yo _ S
Y12 1 Y22 1

We will use vy as the pivot.

11



Example

» Performing elementary row operations, we obtain the

second tableau, a: a: a3 a4 a5 b
21 1 0 0

1 0
1 0 0
rI' -5 0 2
We now haver, = -5<0 . Therefore, we idtroe a; into
the new basis. We next calculat@vi:, y» > 0 to determine
the pivot element:
Y20 _
Y21

We will usey.: as the pivot.

2
0 1
1 3
0 4

o O

Yy _ 3
1

1
1 Y31
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Example

» Performing row elementary operations, we obtainthivel

tableau, a; a; az a4 a; b
0O 1 -1 2 0 4

0 -1 1 0 1
0 1 1 1 2
rl 0 =35 0 9
We haver; = -3<0 . Therefore, we introdugcanto the
new basis. We next calculate the ratiosi2, y» > 0 to
determine the pivot element,
Yso 2

ys3 1
We will useys; as the pivot.

1
0
()
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Example

» Performing row elementary operations, we obtain the

fourth tableau, @ a2 a3 a4 a; b
001 0 1 1 6

1 00 0 1 3
0 0 1 —1 1 2
r' 0 0 0 2 3 15

All reduced cost coefficients are now positive, efhi
means that the current solution is optimal. Thigtsan is
[3, 6, 2,0, 0]
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Unimodular Matrices

» We next consider ILP problems of the form

minimize ¢! x

subject to Ax < b
x>0

x e 7"

» We have seen in Section 15.5 that we can transioem
Inequality constraint into standard form by introohg
slack variables. Doing so would lead to a new mwbin
standard form for which the constraint has the form
A, Ily = b (where the vectoy contaias and the slack
variables). To deal with matrices of the fofm 1 , we
need another definition.

15



Unimodular Matrices

4

Definition 19.2. Anmby n integer matrixa e zm" IS
totally unimodular if all its nonzero minors are!

By minors here we meaih-rder minors forp < min(m,n)
Equivalently, a matrixa ¢ z7 s totallpimmodular if
and only if all its square invertible submatricesda
determinant:1 . By submatrix of A we mean a matrix
obtained by removing some columns and rowa of

If an integer matrix is totally unimodular, therchantry
s O, 1, or, -1.
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Proposition 19.1

» Proposition 19.1. If amby n integer matrixa ¢ z»< IS
totally unimodular, then the matriy, 1 ISmodular.

» Proof. Leta satisfy the assumptions of the psojam.
We will show that anyn by minvertible submatrix ofA, r
has determinant1 . We first note that amlyy m
iInvertible submatrix ofA,I  that consists oafycolumns
of A has determinanti  because islyotadimodular.
Moreover, them by msubmatrix 1 satisfiesiet 1 = 1

17



Proposition 19.1

» Consider now am by minvertible submatrix ofi/A, I
composed ok columns ofA andrk columns ofr
Without loss of generality, suppose that this suinmes
composed of the lagtcolumns ofa and the first-k
columns ofr ; that is, tha by minvertible submatrix is

B7n_ ITTL—‘
B:[a’n—k—i—l an 61 em—k}:[ Bk:,k Ok]

wheree; Is th&h column of the identity matrix. This
choice of columns is without loss of generality dnese we
can exchange rows and columns to arrive at thimms,fand
each exchange only changes the sign of the detantin

18



Proposition 19.1

» Moreover, note thafet B=+det B, . $hB,, is
Invertible becauses is invertible. Moreovergdgese B, ,
IS a submatrix ofa and is totally unimodulas:t B, = +1
Hence, det B=+1 also. Thus anpy minvertible
submatrix[A, I has determinantl , which implies that
(A, I 1S unimodular.

19



Unimodular Matrices

» Corollary 19.2. Consider the LP constraint
A, Ilx =b
x>0
where A € z" |s totally unimodular and z" . Then, all
basic feasible solutions have integer components.

» Total unimodularity ofA allows us to solve ILRPopiems

of the following form using the simplex method:

minimize ¢! x
subject to Ax < b bezZ"
x>0

x c 7"

20



Unimodular Matrices

» Specifically, we first consider the associated k&bpem

minimize ¢! o

subject to Ax < b
x>0
» If A is totally unimodular, then the corollargave tells
us that once we convert this problem into stanftzom
by introducing a slack-variable vector
minimize ¢’ x

subject to [A, I [j] =b

x,z>0

the optimal basic feasible solution is an integgsator.

21



Unimodular Matrices

» This means that we can apply the simplex methdldeo
LP problem above to obtain a solution to the oagihP
problem.

» Note that although we only needed the pareft
solution to be integer, the slack-variable vectas
automatically integer for any integer , becaush A
and » only contain integers.

22



Example

» Consider the following ILP problem:

maximize 2x1 + Hxs
subject to 1 < 4
To < 06
1+ o < 8
x1, Ty > 0
x1, X € L

» This problem can be written in the matrix form abavith

o
A=|01] b= |6
_1 1_

23



Example

» It is easy to check that Is totally unimoduldence, the
LP problem above can be solved by soling the LP

oroblem maximize 2x; + Hxs
subject to x1 +x3 =4

To+ x4 =0
5131—|—$2—|—£C5=8

T1, X2, T3, Ty, T5 2> 0

24



Example

» Consider the following ILP problem:
maximize xi + 2o
subject to — 2z + 19 < 2
1 — To > —3
r1 <3
r1,29 >0 21,19 € Z
» We first express the given problem in the equiviaierm:
minimize — xp — 29
subject to — 221 + 29 < 2
—T+ a9 < 3
1 <3
x1, Ty > 0 x1, Ty € 7

25



Example

» We next represent the problem above in standand byr
Introducing slack variables;, =4, zs;  to obtain
minimize — x; — 229
subject to — 221 + 19 + 3 = 2
—T1+ 2o+ x4 =3
r1+ T5 =3
2, >0,i=1,..5
» The problem is now of the form in Example 19.2, vehe
the simplex method was used. Recall that the soiusi
3,6,2,0,0" . Thus, the solution to the original problem is
x* = [3,6]!

26



Example

» Note that the matrix [, -

A= |-11
L 1 O_
IS not totally unimodular, because it has an e@3@@y not
equalto O, 1, or, -1. Indeed, the matixI is not
unimodular. However, In this case, the simplex radth
still produces an optimal solution to the ILP.
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The Gomory Cutting-Plane Method

» In 1958, R.E. Gomory proposed a method where
noninteger optimal solutions obtained using the femp
method are successively removed from the feasdilbys
adding constraints that exclude these nonintegatisnb
from the feasible set.

» The additional constraints, referred to@smory cuts, do
not eliminate integer feasible solutions from thadible
set. The process is repeated until the optimalkisolus an
Integer vector.

28



The Gomory Cutting-Plane Method

» Definition 19.3. The floor of a real number, dembte |
IS the integer obtained by rounding  towareb .

» Consider the ILP problem
minimize ¢’
subject to Ax = b
x>0

x c 7"

We begin by applying the simplex method to obtain a

optimal basic feasible solution to the LP problem

minimize el x

subject to Ax = b
x>0

29



The Gomory Cutting-Plane Method

» As usual, suppose that the first ~ columns forenbasis
for the optimal basic feasible solution. The cqomsling
canonical augmented matrix is

_al a, -+ a; - Qp Qpi1 -+ Gy yo_
1 0 --- 0 -+ 0 Yim+1l *°° Yin Y10
O 1 -+ 0 - 0 Yomt1 *° Y2n Y20
o o «--- 1 --- 0 yl}m’_'_l e yiﬂ Yi0

| o 0 --- 0 --- 1 ym,m+1 e ym,n ymO_

» Consider theth component of the optimal basic feasible
solution, o . Suppose that  Is not an intege

30



The Gomory Cutting-Plane Method

» Note that any feasible vecter satisfies theaétyu
constraint (taken from théh row)
x; + Z?:mﬂ YiiZi = Yio
We use this equation to derive an additional canstthat
would eliminate the current optimal noninteger solut
from the feasible set without eliminating any irgeg
feasible solution. To see how, consider the inetyal

constraint 5, s |yfa; < g

Becausdyi;| <y, ,amy>0 that satssthe first
equality constraint above also satisfies this idigu
constraint. Thus, any feasibie satisfies thexjuality

constraint.
31



The Gomory Cutting-Plane Method

» Moreover, for any integer feasible vector |, l#fehand
side of the inequality constraint is an integerergfore,
any integer feasible vectar also satisfies

Ti+ ) iemr Lif )75 < |Wio,

» Subtracting this inequality from the equation ahave
deduce that any integer feasible vector satisfies

Z?zm-l—l(yij - Lyz-]-j)azj > Yio — Lyz’o_

32



The Gomory Cutting-Plane Method

» Next, notice that the optimal basic feasible solutbove
does not satisfy this inequality, because theHaftd side
for the optimal basic feasible solution is O, he tight-
hand side is a positive number.

» Therefore, if we impose the additional inequality
constraint above to the original LP problem, thes ne
constraint set would be such that the current cativasic
feasible solution is no longer feasible, but yedrgv
Integer feasible vector remains feasible. This new
constraint is called @omory cut.
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The Gomory Cutting-Plane Method

» To transform the new LP problem into standard fomm,
iIntroduce the surplus variabls.., to obthm ¢équality
constraint

D iema1Wis — i)z — T = yio — Wi
For convenience, we will also call this equalitywstraint
a Gomory cut. By augmenting this equation into  and
or canonical versions of them (e.g., in the forna of
simplex tableau), we obtain a new LP problem indsad
form.

» We can then solve the new problem using the simplex
method and examine the resulting optimal basialiéas
solution.
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The Gomory Cutting-Plane Method

» If the solution satisfies the integer constraitiish we are
done.

» If the solution does not satisfy the integer canats, we
Introduce another Gomory cut and repeat the provéss.
call this procedure theomory cutting-plane method.

» Note that in applying this method, we only need to
Introduce enough cuts to satisfy the integer cangs for
the original ILP problem. The additional variables
Introduced by slack variables or by the Gomory eués
not constrained to be integers.
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Example

» Consider the following ILP problem:

maximize 3x1 + 4x»

subject to %azl + 19 <3 r1, T2 2> 0
%I’l—%xggl T1,T2 € Z

» We first solve the problem graphically. The constraet
for the associated LP problem can be found by ttiog
the extreme points:

2D =[00]" 2@=p 0" a®=[03" z®=[2 0

2

251 |
15 a .
1 4
05| / !
of ¢ |

- |

0 05 1 15 2 257 7377 35 14
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Example

» The solution is obtained by finding the straighely = 3z, + 4,
with largest/ that passes through a feasibletpath
Integer components. This can be accomplished by fir
drawing the linef =3z, + 42,  fagr=0 and then gradually
Increasing the values of , which corresponasiting
across the feasible region until the straight passes
through the “last” integer feasible point yielditiop
largest value of the objective function.

sfm,

2.5t
|

2 m
1.5+

1t m
L

1
05|
1

37 of m

4
- S— 1 v BT SER S S — —
0 0.5 1 1.6 2 25 3 3.5 4




Example

» We can see that the optimal solution to the ILP®@Ems
IS [2,2]"
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maximize 3x1 + 4x»
subject to %xl + 19 <3 ry, o > 0

Example %xl — %azg <1 T, T € 7

» We now solve the problem using the Gomory cutting-
plane method. First, we represent the associated LP
problem in standard form:

maximize 3x; + 4xo
subject to %xl + To+ 13 =3
2

2
1 —fratwy =1 21,9,23,24 2 0

» Note that we only need the first two componentthef
solution to be integers. We can start the simplethiod

because we have an obvious basic feasible solution.
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maximize 3x1 + 4x-
subject to %:1:1 + To+ 13 =3

Example Sr) — 2xg+wy =1 @1,19,23,24 > 0

3 D

» The first tableau Is

a1a2a3a4b
2 1 1 0 3
%—%011
c' =3 -4 0 0 0

» We bring e, Into the basis and pivot about tleenent
(1,2) to obtain @ @ a3 ai b
2.1 1 0 3
" g 2 1 U
29 5 5
r =10 4 0 12
Next, we pivot about the element (2,1) to obtain

a, a, a3 a4 b
0 1 10 1

_ 1020
fi 2% 35
58
2.2

——

1 0
0 0

O—li—‘

Iri
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Example

» The corresponding optimal basic feasible solutson |
3510 )", which does not satisfy the integer constraints.

» We start by introducing the"Gomory cut correspondong
the first row of the tah au We obtaln W Vg

14
‘ '4_‘% 14 ool =n- =5

We add this constraint to our tableau:

a, a, a3 a, as; b
0 1 10 10 0 20
2%4 0 %_%
1 14

_1 &b

Sl =ex|=es

1 0
0 0
0 0

NI e

’I"T
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Example

» Pivoting about the element (3,3) gives
a; as as as as

01 0 —1 1

1 0 0 1

0 0 1 -

v 0 0 0 7

The corresponding optimal basic feasible solutson |
7/2,1,3/5,0,0" , which still does not satisfy the integer
constraint.

o~
| Berleaol~1 — O

DO | O Do | o
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a, ax az a4 as
o 1 0 -1 1

\]
o el cavol 1 — QN

1 0 0 % 1
Example 001 2t
rT. 0 0 0 5 7
» Next, we construct the Gomory cut for the second odbw
the tableau 1 1
PR

» We add this constraint to our tableau to obtain

a, a; a3 a; as ag b
01 0 -1 1 0 1
1 00 2 1 0 1
001§—g05
00030—1i
rT000§70%
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Example
» Pivoting about (4,4), we get

a; ax az a4 a5 as
0o 0 1 =2

ol DN Do o

—_
I

» In this optimal basic feasible solution, the firgb
components are integers. Thus, we conclude that the
solution to our ILP 152,27, which agrees wttie
graphical solution in Figure 19.2.
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Example 19.6

» If we are given an ILP problem with inequality ctramts
as in Example 19.5 but with only integer values in
constraint data, then the slack variables and those
Introduced by the Gomory cuts are automaticallygate
valued.

» Consider the following ILP problem

maximize 3x1 + 4xo
subject to 3x1 — 1y < 12 ry,xe >0

3xr1 + 11xe < 66 T, T2 € 7

A graphical solution is shown in Figure 19.3. As in
Example 19.5, the solution is obtained by finding t
straight linef = 3z, + 4z, with largest athpasses through

a feasible point with integer components. This p@mn, 4)7




maximize 3x1 + 4xo
subject to 31 — 9 < 12 xr1,x9 2 0

Example 19.6 32, + 11zy < 66 1,29 € Z

» We now solve the ILP problem above using the simplex
method with Gomory cuts. We first represent the
associated LP problem in standard form by introagici
slack variables:; and, . The initial tabléas the form

a, as as a4 b
3 —1 1 0 12
3 11 0 1 66
¢’ =3 —-40 0 0

» In this case there Is an obvious Initial basic ifdas
solution available, which allows us to initializest
simplex method to solve the problem.
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Example 19.6

» After two iterations of the simplex algorithm, theal

tableau is a a, as
11

Q
N

10361
0 1 —%
0 0 &

,’,,T

| A&~
| Qola| 2 o

12

[E—
(N}

with optimal solution z* = [1L 2 0 0]"

» Both basic components are noninteger. Let us aoctsdr
Gomory cut for the first basic component=11/2. From
the first row of the tableau, the associated canstr
equation 1S 11 1 11

5614—%3334—%33423
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Example 19.6

» If we apply the floor operator to this equatioreaplained
before, we get an inequality constraint< s

» A graphical solution of the above problem afteriadd
this inequality constraint to the original LP prelvl is
shown in Figure 19.4. We can see that in this nexlpm,
the first component of the optimal solution is ateger,
but not the second. This means that a single Gomdry
will not suffice.

I

| = o - n w S o » ~
|

= [=) - n W » w (=)} ~

48
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Example 19.6

» To continue with the Gomory procedure for the proble
using the simplex method, we first write down the
Gomory cut 11 1 1

— X3+ —Xy — Ty = —
T T A

We now obtain a new tableau by augmenting the pusvi
tableau with the above constraint

a; a; as a, as b
11 1 11

11
0 1 —w 5 0 3
o 0 4L 2
T PP g

At this point, there is no obvious basic feasildkigon.
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Example 19.6

» However, we can easily use the two-phase methad. Th

yields a; a; a3 ay a; b
1 00 0 1 5
01 0 51

ﬁ_i
C oo 1 I hH

1 _36 I3
r 0 0 0 % %1 %

which has all nonnegative reduced cost coefficients

Hence, we obtain the optimal basic feasible satutio

o =[5 % 800

» As expected, the second component does not sHtesfy
Integer constraint.
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Example 19.6

componentz; = 51/11

row of the tableau

1:1:+8x—x—7
[ R §
» Updating the tableau gives

a; as as ag as; Aas b

1 000 1 0 5
010%—@0%
0 0 1 L& -4 o =&
11 811 ]71
00 0 & & -1 &
W00 0 4 g

Again, there is no obvious basic feasible solution.

51
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S
S

o O =
o = O
_ O O

00 1
» Next, we write down the Gomory cut for the basic
using the numbers insmEoNd

- B

e

as
1

_3

3
of!
11

&l o o

1

—



Example 19.6
» Applying the two-phase method gives

a; as as a4g ar Aasg b
1 0 0 0 11 33

8 8
3 3

—_

oo
Ne)

0 2
i

0 =3

1

0

i
of o

,rT

o O O O
OO0 | 00| —bO| oo | —

0
1
0
0

o o O

8 3

The corresponding optimal basic feasible solutidh s
does not satisfy the integer constraints; neitheffirst nor
the second components are integer.
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Example 19.6

» Next, we introduce the Gomory cut using the numbers
the second row of the previous tableau to obtain

a; ay; a3 a, a; ag a; b
1 11 33

1 00 —50 & 0 2
010%0—%0%9
001¥0—1§0?
000§1_?10§
000§0§—1§
T 21 295
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Example 19.6

» Applying the two-phase method again gives

a; as as ay

0

~
Do O o o
oD o o o

(s

0

o0 OO O~ O

0

o0 O = O O

as;

1

|
DO~ | —

—_ |[\3|Q1|

DO —

Qg

0

Dk O O O

a7b

Lo = O

[u—

DO | —bO
S =1 — = Ot

)

o
—_

Note that this basic feasible solution is degemerahe
corresponding basis is not unique. The correspgndin
optimal basic feasible solutionfs4 1 7 00 0]"

which satisfies the integer constraints.
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Example 19.6

» Form this, we see that the integer optimal solutmthne
original ILP problem isj5,4” , which agrees wathr
graphical solution in Figure 19.3.

» In this example, we note that the final solutio. B
problem after introducing slack variables and usirey
Gomory cutting-plane method is an integer vectoe Th
reason for this, in contrast with Example 19.5hat the
original ILP inequality constraint data has onlyeigérs.
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Mixed Integer Linear Programming

» Alinear programming problem in which not all oéth
components are required to be integers is callackad
Integer linear programming (MILP) problem. Gomory
cuts are also relevant to solving MILP problemdaiet,
Example 19.5 is an instance of an MILP problem, bsea
the slack variables in the standard form of thé|enm are
not constrained to be integers. Moreover, themgHpilane
Idea also has been applied to nonsimplex methods and
nonlinear programming algorithms.
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