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Introduction

� Integer linear programming (ILP), or simply integer 
programming, is linear problems with the additional 
constraint that the solution components be integers. 

� Notation
� The set of integers: 

� The set of vectors with n integer components: 

� The set of m by n matrices with integer entries:

� Express an ILP problem in the following form: 
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Unimodular Matrices

� Definition 19.1. An m by n integer matrix               ,           , 
is unimodular if all its nonzero mth-order minors are     . 

� Consider the linear equation              where               ,
Let      be a corresponding basis matrix (an m by m matrix 
consisting of m linearly independent columns of     ). Then, 
the unimodularity of      is equivalent to                 for any 
such     . 

� A pth-order minor of an           matrix A, with                    , is 
the determinant of a         matrix obtained from A by deleting 
m-p rows and n-p columns 
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Unimodular Matrices

� Lemma 19.1. Consider the linear equation             where
,           , is unimodular and           . Then, all basic 

solutions have integer components. 

� Proof. Suppose that the first m columns of      constitute a 
basis, and that      is the invertible m by m matrix 
composed of these columns. Then the corresponding basic 
solution is 

Because all the elements of      are integers,     is an integer 
matrix. Moreover, because     is unimodular,                 . 
This implies that the inverse        is also an integer matrix. 
Therefore,      is an integer vector. 
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Unimodular Matrices

5

� Corollary 19.1. Consider the LP constraint            ,          , 
where     is unimodular,                ,          , and            . 
Then, all basic feasible solutions have integer components. 

� Unimodularity allows us to solve ILP problems using the 
simplex method. Consider the ILP problem 

where                ,           ,           . The corollary tells us that 
if we consider the associated LP problem

the optimal basic feasible solution is an integer vector. 



Example
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� Consider the following ILP problem

We can write this problem in matrix form with 

It is easy to check that      is unimodular. 



Example
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� Hence, the ILP problem above can be solved by solving 
the LP problem 

� This was done in Example 16.2 using the simplex method, 
yielding optimal solution [2, 6, 2, 0, 0]T



Unimodular Matrices

8

� In general, when the matrix      is not unimodular, the 
simplex method applied to the associated LP problem 
yields a noninteger optimal solution. But there is some 
exception. 

� Suppose that                ,          , and            , as long as each 
m by m basis matrix      consisting of columns of     
corresponding to a basic feasible solution has the property 
that                 , we can use the argument in the proof of 
Lemma 19.1 to conclude that the basic feasible solution is 
an integer vector. 

� Equivalently, we can draw this conclusion if each basis 
submatrix of     such that                 corresponds to a 
nonfeasible basic solution. 



Example
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� Consider the ILP problem

Can this ILP problem be solved using the simplex method? 

� The matrix

is not unimodular.   



Example
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� Indeed, this matrix has one (and only one) basis submatrix
with determinant other than      , consisting of the first, 
fourth, and fifth columns of     . 

� Indeed, if we write                       , then                 . 
However, a closer examination of this matrix an the vector 

reveals that the corresponding basic solution is 
not feasible:                           (which, coincidentally, 
happens to be an integer vector). Therefore, for this 
problem, applying the simplex method will produce an 
integer optimal basic feasible solution. 



Example
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� We begin by forming the first tableau, 

We have             . Therefore, we introduce      into the new 
basis. We calculate the ratios                     , to determine 
the pivot element: 

We will use        as the pivot. 



Example

12

� Performing elementary row operations, we obtain the 
second tableau, 

We now have                   . Therefore, we introduce      into 
the new basis. We next calculate                     to determine 
the pivot element: 

We will use       as the pivot. 



Example
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� Performing row elementary operations, we obtain the third 
tableau, 

We have                   . Therefore, we introduce      into the 
new basis. We next calculate the ratios                     to 
determine the pivot element, 

We will use       as the pivot. 



Example
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� Performing row elementary operations, we obtain the 
fourth tableau, 

All reduced cost coefficients are now positive, which 
means that the current solution is optimal. This solution is 
[3, 6, 2, 0, 0]T



Unimodular Matrices
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� We next consider ILP problems of the form

� We have seen in Section 15.5 that we can transform the 
inequality constraint into standard form by introducing 
slack variables. Doing so would lead to a new problem in 
standard form for which the constraint has the form  

(where the vector     contains     and the slack 
variables). To deal with matrices of the form          , we 
need another definition. 



Unimodular Matrices
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� Definition 19.2. An m by n integer matrix                is 
totally unimodular if all its nonzero minors are 

� By minors here we mean pth-rder minors for 
Equivalently, a matrix                 is totally unimodular if 
and only if all its square invertible submatrices have 
determinant       . By a submatrix of      we mean a matrix 
obtained by removing some columns and rows of     . 

� If an integer matrix is totally unimodular, then each entry 
is 0, 1, or, -1. 



Proposition 19.1
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� Proposition 19.1. If an m by n integer matrix                is 
totally unimodular, then the matrix           is unimodular. 

� Proof. Let     satisfy the assumptions of the proposition. 
We will show that any m by m invertible submatrix of 
has determinant       . We first note that any m by m
invertible submatrix of          that consists only of columns 
of      has determinant       because      is totally unimodular. 
Moreover, the m by m submatrix satisfies 



Proposition 19.1
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� Consider now an m by m invertible submatrix of           
composed of k columns of      and m-k columns of     . 
Without loss of generality, suppose that this submatrix is 
composed of the last k columns of      and the first m-k
columns of    ; that is, the m by m invertible submatrix is

where      is the ith column of the identity matrix. This 
choice of columns is without loss of generality because we 
can exchange rows and columns to arrive at this form, and 
each exchange only changes the sign of the determinant. 



Proposition 19.1
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� Moreover, note that                           . Thus,         is 
invertible because      is invertible. Moreover, because 
is a submatrix of      and      is totally unimodular, 
Hence,                   also. Thus any m by m invertible 
submatrix has determinant       , which implies that 

is unimodular. 



Unimodular Matrices
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� Corollary 19.2. Consider the LP constraint 

where                is totally unimodular and           . Then, all 
basic feasible solutions have integer components. 

� Total unimodularity of      allows us to solve ILP problems 
of the following form using the simplex method: 



Unimodular Matrices
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� Specifically, we first consider the associated LP problem 

� If      is totally unimodular, then the corollary above tells 
us that once we convert this problem into standard form 
by introducing a slack-variable vector 

the optimal basic feasible solution is an integer vector. 



Unimodular Matrices
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� This means that we can apply the simplex method to the 
LP problem above to obtain a solution to the original ILP
problem. 

� Note that although we only needed the     part of the 
solution to be integer, the slack-variable vector     is 
automatically integer for any integer     , because both      
and     only contain integers. 



Example
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� Consider the following ILP problem: 

� This problem can be written in the matrix form above with 



Example
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� It is easy to check that      is totally unimodular. Hence, the 
ILP problem above can be solved by soling the LP 
problem 



Example
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� Consider the following ILP problem: 

� We first express the given problem in the equivalent form: 



Example
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� We next represent the problem above in standard form by 
introducing slack variables              to obtain

� The problem is now of the form in Example 19.2, where 
the simplex method was used. Recall that the solution is

. Thus, the solution to the original problem is 



Example
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� Note that the matrix 

is not totally unimodular, because it has an entry (-2) not 
equal to 0, 1, or, -1. Indeed, the matrix          is not 
unimodular. However, in this case, the simplex method 
still produces an optimal solution to the ILP. 



The Gomory Cutting-Plane Method
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� In 1958, R.E. Gomory proposed a method where 
noninteger optimal solutions obtained using the simplex 
method are successively removed from the feasible set by 
adding constraints that exclude these noninteger solutions 
from the feasible set. 

� The additional constraints, referred to as Gomory cuts, do 
not eliminate integer feasible solutions from the feasible 
set. The process is repeated until the optimal solution is an 
integer vector. 



The Gomory Cutting-Plane Method
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� Definition 19.3. The floor of a real number, denoted       , 
is the integer obtained by rounding     toward        . 

� Consider the ILP problem 

We begin by applying the simplex method to obtain an 
optimal basic feasible solution to the LP problem 



The Gomory Cutting-Plane Method
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� As usual, suppose that the first      columns form the basis 
for the optimal basic feasible solution. The corresponding 
canonical augmented matrix is 

� Consider the ith component of the optimal basic feasible 
solution,      . Suppose that      is not an integer. 



The Gomory Cutting-Plane Method
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� Note that any feasible vector     satisfies the equality 
constraint (taken from the ith row)

We use this equation to derive an additional constraint that 
would eliminate the current optimal noninteger solution 
from the feasible set without eliminating any integer 
feasible solution. To see how, consider the inequality 
constraint 

Because                , any           that satisfies the first 
equality constraint above also satisfies this inequality 
constraint. Thus, any feasible     satisfies this inequality 
constraint. 



The Gomory Cutting-Plane Method
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� Moreover, for any integer feasible vector    , the left-hand 
side of the inequality constraint is an integer. Therefore, 
any integer feasible vector     also satisfies 

� Subtracting this inequality from the equation above, we 
deduce that any integer feasible vector satisfies 



The Gomory Cutting-Plane Method
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� Next, notice that the optimal basic feasible solution above 
does not satisfy this inequality, because the left-hand side 
for the optimal basic feasible solution is 0, but the right-
hand side is a positive number. 

� Therefore, if we impose the additional inequality 
constraint above to the original LP problem, the new 
constraint set would be such that the current optimal basic 
feasible solution is no longer feasible, but yet every 
integer feasible vector remains feasible. This new 
constraint is called a Gomory cut. 



The Gomory Cutting-Plane Method
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� To transform the new LP problem into standard form, we 
introduce the surplus variable          to obtain the equality 
constraint 

For convenience, we will also call this equality constraint 
a Gomory cut. By augmenting this equation into      and 
or canonical versions of them (e.g., in the form of a 
simplex tableau), we obtain a new LP problem in standard 
form. 

� We can then solve the new problem using the simplex 
method and examine the resulting optimal basic feasible 
solution. 



The Gomory Cutting-Plane Method
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� If the solution satisfies the integer constraints, then we are 
done. 

� If the solution does not satisfy the integer constraints, we 
introduce another Gomory cut and repeat the process. We 
call this procedure the Gomory cutting-plane method. 

� Note that in applying this method, we only need to 
introduce enough cuts to satisfy the integer constraints for 
the original ILP problem. The additional variables 
introduced by slack variables or by the Gomory cuts are 
not constrained to be integers.



Example
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� Consider the following ILP problem: 

� We first solve the problem graphically. The constraint set 
for the associated LP problem can be found by calculating 
the extreme points: 



Example
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� The solution is obtained by finding the straight line 
with largest     that passes through a feasible point with 
integer components. This can be accomplished by first 
drawing the line                     for           and then gradually 
increasing the values of     , which corresponds to sliding 
across the feasible region until the straight line passes 
through the “last” integer feasible point yielding the 
largest value of the objective function. 



Example
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� We can see that the optimal solution to the ILP problems 
is            . 



Example
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� We now solve the problem using the Gomory cutting-
plane method. First, we represent the associated LP 
problem in standard form: 

� Note that we only need the first two components of the 
solution to be integers. We can start the simplex method 
because we have an obvious basic feasible solution. 



Example
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� The first tableau is

� We bring       into the basis and pivot about the element 
(1,2) to obtain 

Next, we pivot about the element (2,1) to obtain



Example
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� The corresponding optimal basic feasible solution is
, which does not satisfy the integer constraints. 

� We start by introducing the Gomory cut corresponding to 
the first row of the tableau. We obtain 

We add this constraint to our tableau: 



Example
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� Pivoting about the element (3,3) gives

The corresponding optimal basic feasible solution is 
, which still does not satisfy the integer 

constraint. 



Example
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� Next, we construct the Gomory cut for the second row of 
the tableau 

� We add this constraint to our tableau to obtain



Example
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� Pivoting about (4,4), we get

� In this optimal basic feasible solution, the first two 
components are integers. Thus, we conclude that the 
solution to our ILP is          , which agrees with the 
graphical solution in Figure 19.2. 



Example 19.6
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� If we are given an ILP problem with inequality constraints 
as in Example 19.5 but with only integer values in 
constraint data, then the slack variables and those 
introduced by the Gomory cuts are automatically integer 
valued. 

� Consider the following ILP problem

A graphical solution is shown in Figure 19.3. As in 
Example 19.5, the solution is obtained by finding the 
straight line                    with largest    that passes through 
a feasible point with integer components. This point is 



Example 19.6
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� We now solve the ILP problem above using the simplex 
method with Gomory cuts. We first represent the 
associated LP problem in standard form by introducing 
slack variables       and     . The initial tableau has the form

� In this case there is an obvious initial basic feasible 
solution available, which allows us to initialize the 
simplex method to solve the problem. 



Example 19.6
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� After two iterations of the simplex algorithm, the final 
tableau is 

with optimal solution

� Both basic components are noninteger. Let us construct a 
Gomory cut for the first basic component               . From 
the first row of the tableau, the associated constraint 
equation is 



Example 19.6
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� If we apply the floor operator to this equation as explained 
before, we get an inequality constraint 

� A graphical solution of the above problem after adding 
this inequality constraint to the original LP problem is 
shown in Figure 19.4. We can see that in this new problem, 
the first component of the optimal solution is an integer, 
but not the second. This means that a single Gomorycut 
will not suffice. 



Example 19.6
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� To continue with the Gomory procedure for the problem 
using the simplex method, we first write down the 
Gomory cut 

We now obtain a new tableau by augmenting the previous 
tableau with the above constraint

At this point, there is no obvious basic feasible solution. 



Example 19.6
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� However, we can easily use the two-phase method. This 
yields 

which has all nonnegative reduced cost coefficients. 
Hence, we obtain the optimal basic feasible solution 

� As expected, the second component does not satisfy the 
integer constraint. 



Example 19.6
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� Next, we write down the Gomory cut for the basic 
component                  using the numbers in the second 
row of the tableau

� Updating the tableau gives

Again, there is no obvious basic feasible solution. 



Example 19.6
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� Applying the two-phase method gives 

The corresponding optimal basic feasible solution still 
does not satisfy the integer constraints; neither the first nor 
the second components are integer. 



Example 19.6
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� Next, we introduce the Gomory cut using the numbers in 
the second row of the previous tableau to obtain



Example 19.6

54

� Applying the two-phase method again gives

Note that this basic feasible solution is degenerate – the 
corresponding basis is not unique. The corresponding 
optimal basic feasible solution is 
which satisfies the integer constraints. 



Example 19.6
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� Form this, we see that the integer optimal solution to the 
original ILP problem is          , which agrees with our 
graphical solution in Figure 19.3. 

� In this example, we note that the final solution to LP 
problem after introducing slack variables and using the 
Gomory cutting-plane method is an integer vector. The 
reason for this, in contrast with Example 19.5, is that the 
original ILP inequality constraint data has only integers. 



Mixed Integer Linear Programming
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� A linear programming problem in which not all of the 
components are required to be integers is called a mixed 
integer linear programming (MILP) problem. Gomory
cuts are also relevant to solving MILP problems. In fact, 
Example 19.5 is an instance of an MILP problem, because 
the slack variables in the standard form of the problem are 
not constrained to be integers. Moreover, the cutting-plane 
idea also has been applied to nonsimplex methods and 
nonlinear programming algorithms. 


